Simonetti, M., Cannas, DM, Just-Baringo, X., Vitorica-Yrezabal, IJ & Larrosa, I. Cyclometallic ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. ten724–731 (2018).
Salazar, CA et al. Tailor-Made Quinones Support High Yield Pd Catalysts for Oxidative CH Arylation with O2. Science 3701454-1460 (2020).
DiRocco, DA et al. Multifunctional catalyst that stereoselectively assembles prodrugs. Science 356426–430 (2017).
Li, T et al. Efficient chemoenzymatic process for the manufacture of bicyclic boceprevir [3.1.0]proline intermediate based on amine oxidase catalyzed desymmetrization. Jam. Chem. Soc. 1346467–6472 (2012).
Nielsen, LP, Stevenson, CP, Blackmond, DG & Jacobsen, EN Mechanistic study leads to synthetic enhancement of hydrolytic kinetic resolution of terminal epoxides. Jam. Chem. Soc. 1261360–1362 (2004).
van Dijk, L. et al. Mechanistic study of the asymmetric Rh(I)-catalyzed Suzuki–Miyaura coupling with racemic allyl halides. Nat. catal. 4284-292 (2021).
Camasso, NM & Sanford, MS Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 3471218-1220 (2015).
Milo, A., Neel, AJ, Toste, FD & Sigman, MS A data-intensive approach for mechanistic elucidation applied to chiral anion catalysis. Science 347737–743 (2015).
Boucher, TW et al. Desymmetrization of difluoromethylene groups by activation of the CF bond. Nature 583548-553 (2020).
Cho, EJ et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 3281679-1681 (2010).
Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided design of efficient and enantioselective aminocatalytic alpha-chlorination of aldehydes. Jam. Chem. Soc. 1436805–6809 (2021).
Schreyer, L. et al. Confined acids catalyze simple asymmetric aldolizations of acetaldehyde enolates. Science 362216-219 (2018).
Peters, BK et al. Scalable and safe synthetic organic electro-reduction inspired by Li-ion battery chemistry. Science 363838–845 (2019).
Michaelis, L. & Menten, ML The kinetics of invertin action. biochemistry. FROM. 49333–369 (1913).
Blackmond, DG Kinetic analysis of reaction progression: a powerful methodology for mechanistic studies of complex catalytic reactions. Angelw. Chem. Int. Ed. English 444302–4320 (2005).
Mathew, JS et al. Investigations of Pd-catalyzed ArX coupling reactions informed by kinetic analysis of reaction progression. J.Org. Chem. 714711–4722 (2006).
Bures, J. A simple graphical method for determining the order in the catalyst. Angelw. Chem. Int. Ed. English 552028-2031 (2016).
Burés, J. Variable-time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angelw. Chem. Int. Ed. English 5516084–16087 (2016).
Shi, Y., Prieto, PL, Zepel, T., Grunert, S. & Hein, JE Automated experimentation powers data science in chemistry. Acc. Chem. Res. 54546-555 (2021).
Burger, B. et al. A mobile robotic chemist. Nature 583237-241 (2020).
Bedard, AC et al. Reconfigurable system for automated optimization of various chemical reactions. Science 3611220-1225 (2018).
Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363eaav2211 (2019).
Clauset, A., Shalizi, CR & Newman, MEJ Power Law Distributions in Empirical Data. SIAM Rev. 51661–703 (2009).
Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based on variable-time normalization analysis. Angelw. Chem. Int. Ed. English 5810189–10193 (2019).
Bernacki, JP & Murphy, RM Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys. J 962871–2887 (2009).
Pfluger, PM & Glorius, F. Molecular Machine Learning: The Future of Synthetic Chemistry? Angelw. Chem. Int. Ed. English 5918860–18865 (2020).
Segler, MHS, Preuss, M. & Waller, MP Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555604–610 (2018).
Raissi, M., Yazdani, A. & Karniadakis, GE Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations. Science 3671026-1030 (2020).
Hermann, J., Schatzle, Z. & Noe, F. Deep Neural Network Solution of the Electronic Schrödinger Equation. Nat. Chem. 12891–897 (2020).
Shields, BJ et al. Optimization of the Bayesian reaction as a chemical synthesis tool. Nature 59089–96 (2021).
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596590–596 (2021).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596583–589 (2021).
Hueffel, JA et al. Accelerated Identification of Dinuclear Palladium Catalyst Using Unsupervised Machine Learning. Science 3741134-1140 (2021).
Haitao, X., Junjie, W. & Lu, L. In proc. 1st International Conference on E-Business Intelligence 303–309 (Atlantis Press, 2010).
Batista, GEAPA et al. In Advances in Intelligent VI Data Analysis (eds Fazel Famili, A. et al.) 24–35 (Springer, 2005).
Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A new metric for evaluating classifiers. expert system. Appl. 373799–3809 (2010).
Alberton, AL, Schwaab, M., Schmal, M. & Pinto, JC Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I – analysis of first-order reactions. Chem. Eng. J 155816–823 (2009).
Pacheco, H., Thiengo, F., Schmal, M. & Pinto, JC A family of kinetic distributions for the interpretation of experimental fluctuations in kinetic problems. Chem. Eng. J 332303–311 (2018).
Storer, AC, Darlison, MG & Cornish-Bowden, A. The nature of experimental error in enzyme kinetic measurements. Biochemistry. J 151361–367 (1975).
Valko, E. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical modeling in real life problems. Mathematics in industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).
Thiel, V., Wannowius, KJ, Wolff, C., Thiele, CM & Plenio, H. Ring-closing metathesis reactions: interpretation of conversion time data. Chem. Eur. J. 1916403–16414 (2013).
Joannou, MV, Hoyt, JM & Chirik, PJ Investigations of the mechanism of inter- and intramolecular catalyzation by iron [2 + 2] cycloaddition of alkenes. Jam. Chem. Soc. 1425314–5330 (2020).
Knapp, SMM et al. Mechanistic studies of the isomerization of alkenes catalyzed by CCC-pincer complexes of iridium. Organometallics 33473–484 (2014).
Stroek, W., Keilwerth, M., Pividori, DM, Meyer, K., and Albrecht, M. A mesionic iron-carbene complex for catalytic intramolecular CH amination using organic azides. Jam. Chem. Soc. 14320157–20165 (2021).
Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle by in situ LED-NMR spectroscopy. Jam. Chem. Soc. 14013843–13853 (2018).
Ludwig, JR, Zimmerman, PM, Gianino, JB & Schindler, CS Iron(III)-catalyzed carbonyl-olefin metathesis. Nature 533374–379 (2016).
Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers as Lewis acid superelectrophiles. Jam. Chem. Soc. 1411690-1700 (2019).
Janse van Rensburg, W., Steynberg, PJ, Meyer, WH, Kirk, MM & Forman, GS DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. Jam. Chem. Soc. 12614332–14333 (2004).
van der Eide, EF & Piers, WE Mechanistic insights into the ruthenium-catalyzed diene ring-closing metathesis reaction. Nat. Chem. 2571-576 (2010).