• Simonetti, M., Cannas, DM, Just-Baringo, X., Vitorica-Yrezabal, IJ & Larrosa, I. Cyclometallic ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. ten724–731 (2018).

    CAS Google Scholar Article

  • Salazar, CA et al. Tailor-Made Quinones Support High Yield Pd Catalysts for Oxidative CH Arylation with O2. Science 3701454-1460 (2020).

    CAS Google Scholar Article

  • DiRocco, DA et al. Multifunctional catalyst that stereoselectively assembles prodrugs. Science 356426–430 (2017).

    CAS Google Scholar Article

  • Li, T et al. Efficient chemoenzymatic process for the manufacture of bicyclic boceprevir [3.1.0]proline intermediate based on amine oxidase catalyzed desymmetrization. Jam. Chem. Soc. 1346467–6472 (2012).

    CAS Google Scholar Article

  • Nielsen, LP, Stevenson, CP, Blackmond, DG & Jacobsen, EN Mechanistic study leads to synthetic enhancement of hydrolytic kinetic resolution of terminal epoxides. Jam. Chem. Soc. 1261360–1362 (2004).

    CAS Google Scholar Article

  • van Dijk, L. et al. Mechanistic study of the asymmetric Rh(I)-catalyzed Suzuki–Miyaura coupling with racemic allyl halides. Nat. catal. 4284-292 (2021).

    Google Scholar article

  • Camasso, NM & Sanford, MS Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 3471218-1220 (2015).

    CAS Google Scholar Article

  • Milo, A., Neel, AJ, Toste, FD & Sigman, MS A data-intensive approach for mechanistic elucidation applied to chiral anion catalysis. Science 347737–743 (2015).

    CAS Google Scholar Article

  • Boucher, TW et al. Desymmetrization of difluoromethylene groups by activation of the CF bond. Nature 583548-553 (2020).

    CAS Google Scholar Article

  • Cho, EJ et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 3281679-1681 (2010).

    CAS Google Scholar Article

  • Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided design of efficient and enantioselective aminocatalytic alpha-chlorination of aldehydes. Jam. Chem. Soc. 1436805–6809 (2021).

    CAS Google Scholar Article

  • Schreyer, L. et al. Confined acids catalyze simple asymmetric aldolizations of acetaldehyde enolates. Science 362216-219 (2018).

    CAS Google Scholar Article

  • Peters, BK et al. Scalable and safe synthetic organic electro-reduction inspired by Li-ion battery chemistry. Science 363838–845 (2019).

    CAS Google Scholar Article

  • Michaelis, L. & Menten, ML The kinetics of invertin action. biochemistry. FROM. 49333–369 (1913).

    CAS Google Scholar

  • Blackmond, DG Kinetic analysis of reaction progression: a powerful methodology for mechanistic studies of complex catalytic reactions. Angelw. Chem. Int. Ed. English 444302–4320 (2005).

    CAS Google Scholar Article

  • Mathew, JS et al. Investigations of Pd-catalyzed ArX coupling reactions informed by kinetic analysis of reaction progression. J.Org. Chem. 714711–4722 (2006).

    CAS Google Scholar Article

  • Bures, J. A simple graphical method for determining the order in the catalyst. Angelw. Chem. Int. Ed. English 552028-2031 (2016).

    CAS Google Scholar Article

  • Burés, J. Variable-time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angelw. Chem. Int. Ed. English 5516084–16087 (2016).

    Google Scholar article

  • Shi, Y., Prieto, PL, Zepel, T., Grunert, S. & Hein, JE Automated experimentation powers data science in chemistry. Acc. Chem. Res. 54546-555 (2021).

    CAS Google Scholar Article

  • Burger, B. et al. A mobile robotic chemist. Nature 583237-241 (2020).

    CAS Google Scholar Article

  • Bedard, AC et al. Reconfigurable system for automated optimization of various chemical reactions. Science 3611220-1225 (2018).

    CAS Google Scholar Article

  • Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363eaav2211 (2019).

    CAS Google Scholar Article

  • Clauset, A., Shalizi, CR & Newman, MEJ Power Law Distributions in Empirical Data. SIAM Rev. 51661–703 (2009).

    MATH Google Scholar Article

  • Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based on variable-time normalization analysis. Angelw. Chem. Int. Ed. English 5810189–10193 (2019).

    CAS Google Scholar Article

  • Bernacki, JP & Murphy, RM Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys. J 962871–2887 (2009).

    CAS Google Scholar Article

  • Pfluger, PM & Glorius, F. Molecular Machine Learning: The Future of Synthetic Chemistry? Angelw. Chem. Int. Ed. English 5918860–18865 (2020).

    Google Scholar article

  • Segler, MHS, Preuss, M. & Waller, MP Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555604–610 (2018).

    CAS Google Scholar Article

  • Raissi, M., Yazdani, A. & Karniadakis, GE Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations. Science 3671026-1030 (2020).

    CASE MATH Google Scholar Article

  • Hermann, J., Schatzle, Z. & Noe, F. Deep Neural Network Solution of the Electronic Schrödinger Equation. Nat. Chem. 12891–897 (2020).

    CAS Google Scholar Article

  • Shields, BJ et al. Optimization of the Bayesian reaction as a chemical synthesis tool. Nature 59089–96 (2021).

    CAS Google Scholar Article

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596590–596 (2021).

    CAS Google Scholar Article

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596583–589 (2021).

    CAS Google Scholar Article

  • Hueffel, JA et al. Accelerated Identification of Dinuclear Palladium Catalyst Using Unsupervised Machine Learning. Science 3741134-1140 (2021).

    CAS Google Scholar Article

  • Haitao, X., Junjie, W. & Lu, L. In proc. 1st International Conference on E-Business Intelligence 303–309 (Atlantis Press, 2010).

  • Batista, GEAPA et al. In Advances in Intelligent VI Data Analysis (eds Fazel Famili, A. et al.) 24–35 (Springer, 2005).

  • Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A new metric for evaluating classifiers. expert system. Appl. 373799–3809 (2010).

    Google Scholar article

  • Alberton, AL, Schwaab, M., Schmal, M. & Pinto, JC Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I – analysis of first-order reactions. Chem. Eng. J 155816–823 (2009).

    CAS Google Scholar Article

  • Pacheco, H., Thiengo, F., Schmal, M. & Pinto, JC A family of kinetic distributions for the interpretation of experimental fluctuations in kinetic problems. Chem. Eng. J 332303–311 (2018).

    CAS Google Scholar Article

  • Storer, AC, Darlison, MG & Cornish-Bowden, A. The nature of experimental error in enzyme kinetic measurements. Biochemistry. J 151361–367 (1975).

    CAS Google Scholar Article

  • Valko, E. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical modeling in real life problems. Mathematics in industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).

  • Thiel, V., Wannowius, KJ, Wolff, C., Thiele, CM & Plenio, H. Ring-closing metathesis reactions: interpretation of conversion time data. Chem. Eur. J. 1916403–16414 (2013).

    CAS Google Scholar Article

  • Joannou, MV, Hoyt, JM & Chirik, PJ Investigations of the mechanism of inter- and intramolecular catalyzation by iron [2 + 2] cycloaddition of alkenes. Jam. Chem. Soc. 1425314–5330 (2020).

    CAS Google Scholar Article

  • Knapp, SMM et al. Mechanistic studies of the isomerization of alkenes catalyzed by CCC-pincer complexes of iridium. Organometallics 33473–484 (2014).

    CAS Google Scholar Article

  • Stroek, W., Keilwerth, M., Pividori, DM, Meyer, K., and Albrecht, M. A mesionic iron-carbene complex for catalytic intramolecular CH amination using organic azides. Jam. Chem. Soc. 14320157–20165 (2021).

    CAS Google Scholar Article

  • Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle by in situ LED-NMR spectroscopy. Jam. Chem. Soc. 14013843–13853 (2018).

    CAS Google Scholar Article

  • Ludwig, JR, Zimmerman, PM, Gianino, JB & Schindler, CS Iron(III)-catalyzed carbonyl-olefin metathesis. Nature 533374–379 (2016).

    CAS Google Scholar Article

  • Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers as Lewis acid superelectrophiles. Jam. Chem. Soc. 1411690-1700 (2019).

    CAS Google Scholar Article

  • Janse van Rensburg, W., Steynberg, PJ, Meyer, WH, Kirk, MM & Forman, GS DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. Jam. Chem. Soc. 12614332–14333 (2004).

    Google Scholar article

  • van der Eide, EF & Piers, WE Mechanistic insights into the ruthenium-catalyzed diene ring-closing metathesis reaction. Nat. Chem. 2571-576 (2010).

    Google Scholar article

  • Source link

    Leave A Reply